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By extending the considerations of Maier-Leibnitz, the normalization of the resolution function is 
found to be the product of the volumes in reciprocal space of the incident and scattered beams. Each 
volume is defined by an integration in reciprocal space over the probability of finding a particular k, 
where k is the wave vector of the neutron. The resolution can be understood as a convolution of these 
two volumes. For three-axis spectrometers explicit expressions for these volumes are given. The know- 
ledge of the normalization is necessary for numerical unfolding of experimental data. For two cases, 
which often occur in inelastic neutron scattering, it is possible to directly correct the experimental data 
without resorting to numerical unfolding. After applying these corrections the data represent the scatter- 
ing law folded with a resolution function normalized to unity, i.e. the integral over the corrected data 
is the integral over the scattering law. It is shown that in this case, the unfolding of the corrected data 
turns out to be a one-dimensional problem. 

1. Introduction 

The resolution function of an instrument  for inelastic 
neutron scattering depends on the wave vectors kg and 
k s of  the incoming and scattered neutrons respectively. 
In the Gaussian approximation+ + the surfaces of equal 
probabil i ty are four-dimensional  ellipsoids. For a 
nominal  setting Qo and o-~0 of the instrument  the resolu- 
tion function R can be written 

R(Q - Q0, co - COo) = Ro(Qo, COo) 

×exp{- -½k=l  ~ 1=1 ~ Mk,(Qo, oJo)XkX,}. (1) 

Here hQ = h k ~ - h k z  is the momen tum transfer and hv) 
h z 

= 2m (k'z - k } )  the energy transfer, hQo and hoJ0 repre- 

sent the most probable momentum and energy transfers 
and are defined in terms of the most probable  values k t 

and kv of  k~ and k j-. The matrix Mk~ describes the ellip- 
soids and the four coordinates Xk represent the three com- 

* W o r k  p e r f o r m e d  u n d e r  the  a u s p i c e s  o f  the  U . S .  A t o -  
m i c  E n e r g y  C o m m i s s i o n .  

t Permanent address. 
By Gaussian approximation, we mean that Gaussian 

distributions are used for all quantities which determine the 
properties of the neutron beams, such as collimators, mosaic 
widths, pulse lengths, energy widths, counter thicknesses, etc. 

ponents of ( Q - Q o )  and ~-OJo. The semi-major axes 
of these ellipsoids have been derived for a three-axis 
spectrometer by Stedman & Nilsson (1966), Cooper & 
Nathans (1967), Stedman (1968), Nielsen & Bjerrum 
Moiler (1969) and Bjerrum Moiler & Nielsen (1970) 
and for a time-of-flight instrument by Komura  & 
Cooper (1970). But the efficiency factor R0(Q0, o90) and 
the normalizat ion (by which we mean the integral over 
R) have not yet been discussed in the literature, al- 
though they play an important  role in resolution cor- 
rections. For example, failure to take the normaliza- 
tion into consideration in analyzing experimental data 
can cause errors in the determination of both peak 
positions and line shapes. Integrated intensities, which 
are of increasing interest in inelastic neutron scattering 
measurements also depend crucially on the normaliza-  
tion. 

In this paper a general and surprisingly simple 
expression for the normalizat ion of the resolution is 
derived by extending Maier-Leibnitz 's  (1966) treat- 
ment of  intensity and resolution in neutron scattering. 
Tucciarone, Lau ,Corliss, Delapalme & Hastings (1971) 
have also considered the question of normalizing re- 
solution calculations. Their results are in agreement 
with those reported here after taking into account an 
improper  normalization§ in Cooper & Nathans '  
original paper. Nevertheless, in practice this error is 

§ In the course of deriving the normalization we discovered 
an error in formula (24) of Cooper & Nathans. This is discussed 
in Appendix I. 
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relatively minor and a computer program based on 
these considerations has been used to successfully 
analyze experimental data in the Brookhaven group 
for several years (Samuelsen, Hutchings & Shirane, 
1970; Lau, Corliss, Delapalme, Hastings, Nathans & 
Tucciarone, 1970; Als-Nielsen, Axe & Shirane, 1971; 
Hutchings, Shirane, Birgeneau & Holt, 1971). This 
program and another one written by Hutchings and 
Samuelsen (1970), which also uses the erroneous ex- 
pression of Cooper & Nathans (Samuelsen, 1972), 
were found in good agreement with calibration meas- 
urements of phonons in copper (Shirane, 197 I). Werner 
& Pynn's (1971) calculations of corrcctions for resolu- 
tion effects follow a different approach and do not give 
an explicit normalization. Numerical integration was 
checked to agree with the normalization given here 
(Werner, 1971). 

The authors cited in the last paragraph have only 
considered resolution effects in three-axis spectro- 
meters. Dietrich (1971) has treated the analogous 
problem for a time-of-flight spectrometer and has 
derived not only the parameters of the resolution func- 
tion but the normalization as well. 

The paper is organized in the following way. In 
Section 2 the counting rate at the detector is calculated 
following the 'phase space' considerations of Maier- 
Leibnitz. This approach is the key to a transparent 
interpretation of the normalization of the resolution 
function, which is derived in Section 3. An explicit 
expression of the normalization for a three-axis spec- 
trometer is given in Section 4. In Section 5 we discuss 
the corrections to experimental data obtained with a 
three-axis spectrometer and in Section 6 we show that 
by using the Gaussian approximation in calculating the 
resolution function the unfolding of the data often 
becomes a one-dimensional problem. 

2. The neutron counting rate at the detector 

From equations (5) and (7) of Maier-Leibnitz we get 
the infinitesimal current incident on the sample 

d J, = A'(k,) .  dF.  k , .  p,(k,), dk,x.  dk,~,, d k a ,  (2) 

2m ] 1/2 
~ z  2 kBT , kB is the Boltzmann constant and T the 

effective temperature of the moderator. Fig. l shows 
schematically the scattering in real and in reciprocal 
space. 

The scattering cross section of the sample is 

d2X k ,  
d{2d(,o = N--ki-S(Q,o)). (3) 

£" is the macroscopic scattering cross section i.e. the 
scattering probability per cm and per unit area of the 
sample and N is the density of unit cells in the sample 
By equation (3) we define a scattering law S(Q,co), 
which contains the scattering lengths of all nuclei in 
the sample. 

In order to derive the infinitesimal current at the 
detector we use elements of the scattered beam in units, 

! ' ! ~ " , , .  R E A C T O R  

IVI O~I~ MHAR T IOMN A TAoNR D k I # /  Xx~..- k F 
ov, 

~-SCATTERED BEAM ~V I V; 

COLLIMATION AND 
:~X ANALYZER (b) 

" ~~'~ACOUNTER 

(a) 

Fig. 1. Schematic drawing of an inelastic neutron scattering 
experiment: (a)in real space, (b) in reciprocal space. 

where dF is an element of the geometric beam cross 
section. For a sample small compared to the beam 
area, the current can be assumed constant and dF can 
be integrated to F, which is the area of the sample. 
p~(kt) is the probability of finding a neutron with wave 
vector k~ in the beam produced by any monochromator 
and incident on the sample, p~(kg) replaces the quantity 
fo used by Maier-Leibnitz. 

Under the assumption of a Maxwell distribution in 
the reactor we write 

A'(k,) = (0 k~ 
2a~k~. e x p ( -  kZ ) 

where 9 is the thermal flux in the reactor , k r= 

"~M al "kl l_.si n OM/ \ 

• ~ cos } ~M" kI" OM 

k I 

aO Cf I 

Fig. 2. Distribution of monochromatic neutrons in the scatter- 
ing plane produced by a single crystal monochromator,  
where 0M is the Bragg angle, 2nrM the rec. lattice vector of 
the reflecting planes, ct0 and cq are the horizontal collima- 
tions of the incoming and outgoing beams and r/M is the 
horizontal mosaic width of the crystal. 
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which are compatible with the cross section given in 
cquation (3). These elements are 

dkf.,~, dkf~, h k:dkf~. 
dr2: . . . . . . .  k-f-- , do) f = -m 

Let p:(k:)  be the probability that a neutron with wave 
vector k:  passes the analyzer and is counted at the 
detector. Then for a sample of thickness t the infinitesi- 
mal current detected is 

R'(Q,O)) -= R ( Q -  Q0, o)--~o) 

= f I J [ ( Q - Q o ) - { k i - k : - ( k ~ - k F ) } ]  

h 

x p,(k,), p : ( k f ) ,  d V,.  d Vs.  (8) 

d2,~ v" 
d J ' =  dJt .  . t .  p:(kr) • d O : .  do): 

df2do) 

= A .  S(Q,O)). p~(k~), p:(k f )  . dk~x . dku, . dk~ 

x dj fx .  dk:y .  dk:~ (4) 

where A includes among ether factors A'(ki), t and the 
sample area F. By substituting 

d Vi  = d k i x  • d k i : .  • dki~ 

d V: = dk::, ,  dk:, . ,  dk:_ (5) 

in equation (4) one sees that the infinitesimal current 
at the detector is proportional to the volume elements 
in k space for the incoming and outgoing beam, as 
Maier-Leibnitz has shown. 

Equation (4) is not as simple as it appears since the 
scattering law depends on Q and o), while the inde- 
pendent variables in equation (4) are k~ and kf. There- 
fore, we collect all combinations of k~ with k:, which 
contribute to a given Q and o), and write dJ propor- 
tional to elements in Q,o) space; 

d J =  A.  S(Q,O)) l I p'(ki) " p: (k : ) .  J [ Q - ( k , - k : ) ]  

× J  09- 2 m ( k ~ - k } )  . d V , . d V : . d 3 Q . d o ) .  (6) 

Both dJ and dJ '  have the dimension neutrons per sec. 
Although SdJ '=~dJ,  dJ '  is defined in elements of 
k~. k:  whereas dJ is written for elements of Q and o). 
The 6 functions in (6) represent conservation of mo- 
mentum and energy. We can rewrite equation (6) in a 
more condensed form 

dJ= A . S(Q,O)). R'(Q,O)). d3Q. do) (7) 

where the scattering law S(Q,o)) describes the physical 
characteristics of the sample and R'(Q,O)) the transmis- 
sion or resolution function of the instrument. A par- 
ticular setting of the instrument can be described by 
the most probable values kt and kv or preferably by 
Q0 and o)0. The resolution function R'(Q,O)) can be 
redefined in terms of Q0 and o)0 

Thus the counting rate at the detector for a position 
Q0, o)o is given by the expression 

J(Q°'o)°)=A I S(Q,o)). R (Q-Q0 ,  o)-o)o)d3Qdo). (9) 

Note that our definition of the resolution function R 
differs from that of Cooper & Nathans by the factor 
k:/k~, which we have included. This definition has two 
advantages; first, R is now easier to understand as 
explained in the next section and second, the integra- 
tion in equation (9) is performed over the most suitable 
variables, Q and o). As for scattering of thermal 
neutrons the scattering law S(Q,o)) depends only on the 
momentum transfer hQ and the energy transfer ho) and 
does not depend on the chosen pair of k~ and k:,  an 
integration over these latter quantities as performed 
by Collins (1963) is unnecessarily complicated and 
obscures the clear separation of sample from instru- 
mental properties as shown in equation (9). 

3. The  resolut ion funct ion  

To visualize the resolution function, it is convenient 
to show that R as a function of Q is a convolution of 
the probability p~ with the probability p:. Therefore we 
integrate R'(Q,O)) [see equations (6) and (7)] over oJ 
and obtain 

R"(Q) = S R'(Q,o))do) 

=fv, lv [Q 
(lO) 

The probabilities Pi and pf  describe only neutrons 
traveling in the direction of the beam. When kz is 
negative (z being the direction of the beam) pl and p: 
are zero. This enables us to integrate from - c~ to + co. 
The integration of equation (10) is equivalent to a pro- 
jection of R' onto the o)=0 plane (see Section 6). 

After integration over Vv we have 

R"(Q)= I p , (k , )p f (k , -Q)  dV, (11) 
Vl  

which shows that R"(Q) is a convolution of the distri- 

A C 2 8 A  - 2 *  
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bution of k~ within V~ with the distribution of k:  
within VF. 

Alternatively, if we integrate R'(Q,og) over Q we get 

R'"(co)= I R'(Q'~)d3Q 

=iv, iv h --2rn (k~-k})] 

x p,(k,), p.r(k.r), d V,. d V.r. (12) 

The problem here is that the 0-function is a condition 
on the energy, which means that it selects particular 
combinations of k~ z and k~, whereas the integration is 
performed in k-space, that is with equal steps in k. 

First we define a new quantity prob(k=) obtained by 
integrating over k= and ky. k= is parallel to the most 
probable k (kl or kv) 

prob (k=)= I p(k) dk= dk~.. (13) 

After integration of equation (12) over the x and y 
components and dk:= we get 

. ' 
• - h - -  . • 

(14) 

While previously p was defined to be non-zero only 
when k= is positive, now we must define prob ([/k~) to 
be non-zero only for positive k z. Again we can integrate 
from - o o  to +c~. It is easily seen that equation (14) 
turns out to be a convolution in energy 

I I R'(Q,o9)d3Qdog= I f  R ( Q - Q o ,  ¢o-090)d3Qd(o 

= Iv, fvv p`(k/) " p:(k:)  d via V: : V,. Vr (16) 

with 

i v, Pi(kt) d Vl = Vt 
and (17) 

l vvP:(kr) d V : =  Vr. 

The normalization is proportional to the product of 
the volumes [as defined by (17)] in reciprocal space: 
Vx around k, and Vv around kv, and is independent of 
the scattering angle. Equation (16) contains no approx- 
imations and holds for three-axis spectrometers as well 
as for time-of-flight instruments. 

4. The  vo lumes  II1 and Vr for s ingle-crystal  sys tems  

From the derivation given in the Appendix, we find 

V~= eM(k~), k~. cot 0M. (27C) 3/z 

x 
I/(4 sin2(Om)rlM 2 q-fl~) q-fl~) 

× ..... _r/M. ~0__'~1 ..... (18a) 

VF=Pa(kF). kae. cot 0a.  (2X) 3/2 

X 

I/(4 sin'- (0A) q~  + f122 + p ] )  

" [ ~ A • ~ 2  • (~3 ( 1 8 b )  
x [/(ct 2+~+4r /2)  . 

R,,,(co)= I probg (~/k~=) . probj. [~(k~=_ 2m 

1 x d(k,=). (15) 
2kt= 

500 

I, 4oo 

0 

~ 300 
hi  
Z 

But equation (15) is not just a convolution of the 
probabilities of finding a particular kt= or a k~.=, but 
rather the convolution of the probabilities weighted by 
1/kt=. Another interpretation is that (15) is a convolu- ~ 20o 

O 
tion of the two probabilities with respect to energy, ~, / 

but the step width is weighted to get equal steps in k ,oo~ 
space rather than in k 2 or energy space. | 

The properties of the resolution function discussed L so far in this section are intended to help visualize the o - -5 
contributions from various components. We will make 
use of this convolution consideration in Section 5. 

Let us now turn to the very important question of 
normalization. This requires that we integrate equation 
(10) over Q 

I I I 1 I E [ [ I 

Tb 2 (MOO4) 3 

Q= I/2 (9,5,0) 
- ~ T= 414°C - -  

/ : .  WIOT. 
__ / ~A'  ~ .  RESOLUTION _ 

_k_ I I I I I _1 [ I 
-4  -3 -2 -I 0 I 2 3 4 5 

ENERGY TRANSFER tlw [rneV] 

Fig. 3. Inelastic neutron scattering results of Tbz(MoO4)3. The 
solid line represents a least-squares fit of a symmetric scat- 
tering law multiplied with the normalization of the res- 
olution function. 
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%, e~, e2, % and fl0, fix, flz, f13 are the horizontal and 
vertical divergencies of the collimators, where 0, 1, 2, 3 
refer to inpile, monochromator-to-sample, sample-to- 
analyzer and analyzer-to-detector respectively, r/M, r/~, 
and r/A, r/~ are the horizontal and vertical mosaic 
widths of the monochromating and analyzing crystals 
respectively and 0M, 0a are the Bragg angles of mono- 
chromator and analyzer. 

In many cases [4 sin z (0M)r/~] can be neglected com- 
pared to (fl~+fl~). Further, if PM(kl) and PA(kF) are 
assumed to be constant, one gets 

I/i oc k~. cot 0M (19a) 

Vv oc k 3 . cot 0A. (19b) 

It is easy to understand relations (19a) and (19b) by 
referring to Fig. 2 which shows VI projected onto 
the scattering plane for % > cq. The projection of V~ is 
proportional to (qM • kf .  cos 0M). (e~. k~/sin 0M). For 
fl0>fit the vertical contribution (normal to the plane 
of the Fig. 2) gives a factor k~. fit. It then follows that 

V1~_k3 " cos 0M 
sin 0~--ff" r/M. ex. fl~. 

Besides PM(kI) and Pa(kF), qM, q'M, ~,4 and r/~ also 
depend on kl and kv respectively (Dorner, 1971) but 
the dependence on the wave vector can be measured 
and incorporated empirically into the expressions (18a) 
and (I 8b). 

The above expressions for VI and Vr contain no 
additional approximations beyond those made by 
Cooper & Nathans, i.e. the widths ofpi(k,) and p:(kf) 
are small compared to k1 and kF respectively and 

Z o" 

G(X-Xo, ~?i) 
G(X-Xos ~710 ) 

/ 

w 

"qlO ,r/f 

X-  X o= - "'/~ o X-Xo= "/I 0 

Fig. 4. The solid line represents the true effect of the resolution 
for varying rh and the broken line gives the approxima- 
tion discussed in Section 5. 

Gaussian distributions representing collimators and 
mosaic widths. 

5. Intensity corrections for resolution effects 

In Section 3 the resolution function has been derived 
as a property of the measuring instrument. In other 
words, R ( Q - Q 0 ,  co-CO0) describes the characteristics 
of the instrument at a nominal position Q0,COo. In this 
section, we are going to combine the characteristics of 
the sample, given by S(Q, CO), with the resolution func- 
tion R. From equation (9) we see that the counting 
rate J is a folding of S and R. There is a complication 
in that the four-dimensional Gaussian R has different 
widths and heights at different Q0 and COo, as can be 
seen from equation (1). If we diagonalize the matrix 
Mks(Qo, COo) to M~,t(Qo, COo), then we can find the widths 
wk(Qo, coo) in the directions of the four principal axes 
by using the relation 

1 
½M~'t(Q°'CO°)= w~(Qo, co0) ~k,. (20) 

We integrate equation (1) and use equations (16) and 
(20) to obtain 

I R(Q-Qo ,  co-CO0) d3QdCO 

4 

=Ro(Qo, cOo)n 2 . FI Wk(Qo, COo)= I/i. Vr.  (21) 
k = l  

The efficiency factor Ro now can be expressed in terms 
of the normalization and the widths 

v,.v~ 
R0(Q0, co0) = 4 , (22) 

~z • I-I Wk(Q0, coo) 
k = l  

As mentioned in the introduction, the wk for a three- 
axis spectrometer have been calculated by several 
authors. VI and Vr for such an instrument are given 
in Section 4 of this paper. Hence equation (22) fully 
determines Ro(Qo, COo). 

R0 is the quantity which we must have in order to 
numerically integrate equation (9), i.e. to fold our 
resolution function with the scattering law. There are 
however two situations which are commonly en- 
countered in inelastic neutron scattering measurements 
in which it is not necessary to do the numerical integra- 
tion when the product VI. Ve is known. Let us con- 
sider these in more detail. 

(a) S(Q, CO) slowly varyhlg in all four dimensions 
By slowly varying we mean that S varies linearly 

within the resolution volume. Then, since R (within 
Gaussian approximation) is an even function, S(Q, og) 
can be replaced by S(Q0,co0) and with the help of (16) 
and (17) equation (9) reduces to 

J(Qo, cOo)=AS(Qo, COo). V~. Vp . (23) 
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Thus fitting a theoretical S(Q0, co0) to J(Q0, COo) involves 
only multiplying S by Vt. VF and it is not necessary 
to unfold the data in this case. This method has been 
used to analyze results on quartz (Bauer, Jagodzinski, 
Dorner  & Grimm, 1971). 

As an illustrative example, we have applied equation 
(23) to inelastic neutron scattering data from 
Tb2(MoO4)a as described by Axe, Dorner  & Shirane 
(1971). This is shown in Fig. 3. The scattering law, 
which describes a heavily damped phonon of a soft 
mode, is, to a good approximation,  linear within the 
resolution volume. Moreover,  the temperature  is high 
enough compared to the energy transfers so that  the 
scattering law can be taken to be symmetric for energy 
gain and loss. Therefore, the asymmetry  in Fig. 3 is 
entirely due to the normalizat ion of  the resolution 
function. A least-squares fit using equation (23) gives 
excellent agreement with the experimental data. 

(b) S(Q, co) planar in four-dimensional  space 
By planar  we mean that  (i) S(Q,o)) is restricted in 

the dimension perpendicular to a plane, (ii) S(Q, oJ) is 
not curved within the resolution volume. For harmonic 
phonons with infinite lifetime the plane, which repre- 
sents the dispersion surface, has effectively zero thick- 
ness, and this can be expressed by means of a g-func- 
tion. When scanning through such an S(Q,~o) one has 
to consider the variation of two quantities, the efficien- 
cy factor R0 and the shape of the resolution function. 
The shape is given by the widths wk. We assume that 
the orientations of the principal axes of R do not 
change during the scan. 

We must now consider how much of the change in 
the normalizat ion VI .  Vv along the scan is due to a 
change in the efficiency factor and how much is due 
to changes in the widths. To do this, we must  refer 
back to equation (I 1), where we showed that  at least 
as far as the Q dependence is concerned, R is a con- 
volution ofp~(k~) with p:(k: ) .  Simplifying, we describe 
both p~ and p :  by one-dimensional Gaussians with 
widths r/l and rh respectively. The folding of these two 
Gaussians G(x) now represents the resolution function 
R. In this expression x stands for the four dimensions 
of R. Later, x will represent enly the dimension 
perpendicular  to the plar.e representing S. 

,7, . r/~ [ ( X -  Xo) a ] 
G ( x - x o ) ~  (24) ]) (qi-+ r/zZ) -" exp t . . . . . .  2(r/,2 ..... + r/a)z-] • 

f G ( x - X o )  dx  ~ r/l • r/2 - n o r m a l i z a t i o n  

normalization 
rh • r/2_ - efficiency factor . . . . .  

V(r/2 + r/~) width 

Let us assume r/~ > r/2 or in other words that p~ is much 
wider than p: .  Then the width of G(x) is entirely deter- 
mined by r/~ and the efficiency factor is qz 

G ( x -  Xo) ~ r/2 • exp { - ( x -  Xo) z 

r/~ >~ r/z .... 2q{- }" 
(25) 

An inelastic scan can be made either by varying k :  and 
holding kl fixed or vice versa. The first possibility, i.e. 
k~ fixed, implies that r/l is fixed. Hence, the width of the 
resolution is unchanged, during the scan and the 'over- 
lapping' of S and R is the same on both sides of the 
maximum. Only the efficiency factor r/2 varies. Dividing 
the data at each point by q2 (which in effect is dividing 
by VF) is equivalent to a representation in which the 
scattering law S is folded with a normalized resolution 
function (see section 6). 

A second possibility is that  r h be fixed while r/1 
varies. This is more complicated because now the ef- 
ficiency factor is constant  and all of the variation is 
due to the change in the width of the resolution func- 
tion. In this case we assume that x represents only the 
dimension perpendicular to the plane. This means that 
the resolution function is already integrated over all 
three dimensions in the 'plane' ,  or in other words that 
the resolution function is projected (see Section 6) onto 
an axis perpendicular to the plane. 

We are interested in the value of G at x, where x is 
assumed to be the intersection with the plane, while 
the instrument is at a nominal position x0. The width qt 
of G depends on x0. Expanding equation (25) in a 
Taylor  series [with respect to rh around 1/10 (at x = x0)] 
gives 

G ( x -  Xo, 111) = G ( x -  Xo, qlo) + r/2 

(X-Xo) a [ (X-XoY 
r/lO) + (26) x exp . . . .  ~10 z ..... j ~/-lo 5 . . . . .  . . .  

For small (r/~-rho) we now obtain G ( x - x o ,  r/O for a 
scan which changes the nominal position x0. The varia- 
tion of r/~ with x0 is not of particular interest in this 
context. Fig. 4 shows G ( x - x o ,  rh ) /G(x -Xo ,  r/~o) as a 
function of  r h. At the position X - X o  = rho 

G(r/'-°Lq')--- = 1 + r/t _ 1= rh (27) 
G(r/10, r/10) r/lO r/10 

In Fig. 4 the result of applying equation (27) appears 
as the broken line. It can be seen that  equation (27) 
agrees with equation (26) at x - x 0 = 0 ,  and X - X o =  
+ rho, i.e. at positions where G(x, rho) is 1 and 0.61. The 
broken line is the approximation to the correction 
obtained by simply dividing by r/t, which is equivalent 
to dividing by I, I1. 

Fig. 4 gives the impression that  the disagreement 
between the true correction (the solid line) and the 
approximate correction (the broken line) is much 
larger than in fact it is for the four-dimensional re- 
solution function. This is because we have been con- 
sidering only one dimension. The integration over three 
dimensions within the plane is already done for ever), 
point by the instrument and the approximation there- 
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fore affects only one of the four dimensions of the re- 
solution function. 

The approximation is even better if r/l~_r/2 (i.e. 
I / i~ VF), because the change in the width is smaller. 
The variation of rh will now affect both the width and 
the efficiency factor, and the change in the efficiency 
factor will be exactly taken into account by Vj. VF as 
was shown above. 

Thus, for well defined phonons the method of 
dividing every measured point by VI. VF is a good 
way to obtain data which represent a convolution of 
the phonon scattering law with a normalized resolu- 
tion function (see Section 6). 

1 
A monitor with a . . . .  characteristic, set in the 

k~ 
incident monochromatic beam to control the counting 
time, directly corrects for the variation of V~. Hence, 

1 
for cases 5a and 5b with kr fixed and a ~ monitor, no 

corrections for changing resolution are necessary. 

6. Discussion of the data corrected by the normalization 

In Section 5 we discussed how the normalization of the 
resolution function affects the intensity of each meas- 
ured point. Now we will consider the measured widths 
and integrated intensities in more detail. 

To do this, we will first show an interesting property 
of Gaussian functions for a two-dimensional example. 
This is most easily understood by imagining that x is 
a coordinate perpendicular to the plane representing 
S(Q, co) and y stands for the three coordinates in the 

i,dlt 1. 

~ 3  m 

%2 

i,d 

I 
I 

W04 - -  . - -  

% 3  

I, dt2 -- -- 

t ' t4  -- 

t % 1 - -  

/ / 'I/ ,  

I 

Or4 IQo O,~ 
Q,,3 Q,2 

w 

= - q  

Fig. 5. The ellipses represent projections of four-dimensional 
ellipsoids for different probability. For a const-Q0 scan the 
Qti, fgti of contact with the scattering law S(Q, co) are shown 
for four different o90~. Note that the lines connecting Qoc,3m 
with Qit,o,)t~ a r e  parallel. 

plane, as was done in Section 5. We mentioned there 
that the instrument performs an integration within the 
plane, i.e. along y. If we assume S(Q, co) to be constant, 
the integration can be performed over the resolution 
function alone for every x. 

I exp {--(al,x2 + 2a12xy + a2:y2)} dY 

=const.  exp{--a l la22--a~2x2} " a 2 2  (28) 

At x 2= a22 the probability has dropped to e - i  
a l i a 2 2  - -  a 2 2  

of the probability at x = 0. 
Now we compare the result of the above integration 

with the result of projecting the ellipse 

a n  X2 -1- 2atzxy + a22Y 2 = 1 (29) 

dx 
onto the x axis. We set dy- = 0  and calculate the co- 

ordinate xp and find 

2 _ _  a 2 2  (30) 
X p  . . . . . . . .  

a l i a 2 2  - -  a 1 2  

Thus we see that a projection gives the same width as 
an integration. This holds for more than two dimen- 
sions as well. 

Using the projection of the ellipse helps to visualize 
the factors affecting the measured intensity and line 
shape. In a scan, in which Qo and o)0 vary, we define 
ellipsoids of different probabilities, so that for each 
value of Q0,co0 one ellipsoid just contacts the plane 
representing S(Q, co) at Q,,co~ (see Fig. 5). A scan 
perpendicular to the plane yields the smallest measured 
width. 

Under the assumption that S(Q, co) is constant, the 
probability associated with the 'ellipsoid of contact' 
times S gives the measured intensity also, the measured 
width for any direction of scan is larger than the smal- 

l 
lest width by a factor - - -  (tp being the angle between 

cos q~ 
the scan and the normal to the plane). As long as S is 
constant, a 'perpendicular' scan will not reveal more 
physical information than an inclined one. 

A more realistic S(Q, co) varies with Q and o9. Then 
to a good approximation, S ( Q ,  cor) at the contact 
point can be considered as giving the 'mean value' of 
S(Q, co), which contributes to the scattering at a 
nominal setting, Q0,co0 (see Fig. 5). Therefore, the 
counting rate at Qo, coo is S(Qt,cot) times the proba- 
bility on the surface of the contacting ellipsoid. For 
most scans Q,,co, will change with the variation of 
Q0,co0. At the position of maximum overlap between 
S and R it follows that Q~ = Qo and cot = coo. 

We understand that the 'mean value' of S(Q, co) 
described above will change during a scan varying 
Q0,co0. If S(Q, co) is known approximately, one can 
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evaluate the values of Q,,co, and take into account the 
varying 'mean value' of S(Q, co). This correction has 
been performed for phonon measurements in argon 
(Dorner & Egger, 1971) and in CD4 (Press, Dorner & 
Stiller, 1971). For S(Q, co) described by a plane, all 
Q,,co, along the scan lie on a straight line through the 
center of R. Having taken into account both the 'mean 
value' of S and the normalization corrections explained 
in Section 5, the unfolding reduces to a one-dimensional 
problem even if the phonon has an intrinsic line shape, 
since the contribution of the resolution to the measured 
width is known. A favourable scan is a scan which has 
the same Q,,cor for all Qo, coo. 

Consider now the measured intensities l(Q0, coo) cor- 
rected by Vi[kl(Q0,co0)] and Vr[kj=(Q0,co0)]. We rewrite 
equation (9) 

l(Qo, co0) _ J(Qo, coo) A t= A At l S(Q, co) 
- v , .  v~ v , .  V /  " 

x R(Q-Q°'°{-°-~-°) d3Qdco (31) 

where At is the measuring time which is assumed to be 
the same for each point. Since R(Q-Qo ,  co-coo) 
depends on the zero points Qo and coo, an integration 
of equation (9) over Qo and coo would not be easy. But, 
R(Q - Qo, ~o- (%) . 
....... V~. Vv Is a normalized function indepen- 

dent of Qo, O)o within the approximation discussed 
in 5b. Since this integral is independent of Q and 
co, we integrate equation (31) over dQo • dcoo and get 

f l(Q0,coo) dQ0dco0= A. ~ t .  ~ S(Q, co)d~Qdco. (32) 

Equation (32) shows us that the integration (effectively 
a summation) over the corrected intensities yields the 
integral over the scattering law. 

l(Q0, o)0) . 
Hence - V .  V~. is a folding ofS(Q, co) with a resolu- 

tion function normalized to unity. The unfolding of a 
Gaussian with S(Q, co) will not be further discussed 
here. 

7 .  C o n c l u s i o n  

We have derived an exact normalization of the resolu- 
tion function and have shown that the so-called ef- 
ficiency factor Ro can be expressed as a function of the 
normalization and the widths in the direction of the 
principal axes. This simple result for R0 should be a 
great help for numerical evaluation of the folding of 
the resolution function with the scattering law. 

Assuming that S(Q, co) varies linearly over the volume 
of R (at least with respect to three dimensions) we give 
a method for correcting the measured data without 
numerical convolution. In the case of phonons it is 
necessary to assume that S(Q,e)) is planar to apply 
this technique. In this case, we show that the unfolding 
of the data reduces to a one-dimensional problem and 

the integral over the corrected data yields the integral 
over the scattering law. 

The author has benefited from many discussions 
with Dr G. Shirane and especially with Dr J. D. Axe. 
He is indebted to Drs L. Passell and O. W. Dietrich 
for their careful reading and help with the manuscript. 

A P P E N D I X  

Starting with Cooper & Nathans's (1967) equation (6) 
we find 

p,(k,), dk,x . dk,y.  dk,== PM(k,)PoM 

x exP{½[(-(-Alq/k')tan-O~4+Y'] z 
rim 

[2(AkJk , )  tan 0n + y, z 712 
+~, ~ ......... )+~f 

( , + l ] } l  + 

x d(Aki) . kt • dyl • ktdal (33) 

where d(Aki) is the component in the direction of 
k~, k~. d71 is the component in the scattering plane 
perpendicular to kt and k~. d6I is the component 
perpendicular to the scattering plane. 

Equation (6) of Cooper & Nathans contains several 
minor errors. First, the denominator of the 61 and fiz 
expressions should contain sin 0M and sin 0a instead of 
tan 0M and tan 0a. Second, they include only one P,,, 
which is derived in their Appendix I for the mono- 
chromator; a similar expression for the analyzer is 
missing. 

There is a more serious objection to their expression 
for Po, as given in their equation (24). If we assume 
[31 >flo and r/~t, then all incoming neutrons with vertical 
divergence defined by fl0 must be reflected by the mono- 
chromator. To understand how this comes about, we 
note that the attenuation produced by the finite 
reflectivity of the monochromator is expressed by PM 
[actually PM(k~)]. The vertical collimation plays no role 
in determining the values of ki, which will be reflected; 
this is entirely determined by the horizontal Bragg 
condition. Thus, if PM(kt) is set equal to unity, we 
should expect that the integral over fi, is proportional 
to ,80 or in other words that every neutron with an 
acceptable k~ and a vertical divergence within fl0 will 
be reflected. In fact, this condition is not satisfied if 
Cooper & Nathans's formula (24) is integrated. This 
consistency consideration has been used to derive cor- 
rect expressions for PoM and POA, which are 

P O M  = . . . . . . .  7 - ~ :  . . . .  

I/4 sin" (OM)r/~ +flo 
/~3 

P°A= i;4 sin 2 (OA)q2 q2fl:i " 
(34) 
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Chesser (1971) has pointed out that this error is a 
consequence of the fact that Cooper and Nathans's 
equation (14), which describes the probability of verti- 
cal broadening of the beam by reflexion from a crystal 
with a vertical mosaic spread, is not normalized. 
Equation (C & N 14) should read 

1 exp  - ½ k ~  
P ( d ~ - d o ) =  ]/(2re). 2 sin OMq'M QM • rl'~ j" 

(C & N 14) 

We used the Bragg equation 2 .  k i .  sin 0M = QM. 
The correct P0M consequently reads 

1 
P0M- [t  zc)'/~2 --~ . 2 sin 0Mr/~" P0c~,N (35) 

where POC&N is given by Cooper and Nathans's equa- 
tion (24). 

Comparing our P0M with equation (5.3) of Tuccia- 
rone et al. (1971) we found a misprint in their equation 
(5.3), as a factor 2re. r/~. r/~ is missing in the deno- 
minator. Integrating equation (33) we get 

I/i = PM(k,) . (27Z) 3/2 × 

kl 
[ (  ] (  i 4 1 1 1 1 + 2  2 1/2 

tan0M 
• ÷ I-( 

/~o 
x [,(4--sin- ~ (OM)r/~ +fiE) 

1 
X ] / ( - -  1 + 1 , ' k ~ "  

4 sin z (OM)rl~ + flz o fl~ !, (36) V~ 

This reduces to 

V,= eM(kt ) .  (2703/2 • k 3 cot OM 

x 

V(4 sin z (OM)rl~ +fig +fl~z) " -i/(~g +c~ +4q~)  " 
(37) 

A similar expression can also be derived for the 
analyzer, where PA(kv) represents the counter efficiency 
and the reflectivity of the analyzing crystal. 
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